
Implementing a Problem Based Learning Environment in Flash

Gordon Graber

School of Information Science and Learning Technology

University of Missouri, USA

glgqk3@mizzou.edu

Abstract: Problem Based Learning Environments (PBLEs) can provide an integrated series of

authentic learning activities where students employ multiple cognitive strategies to master complex

and ill-structured problems. Technology enabled PBLEs are potentially effective delivery

mechanisms for these unique learning experiences on a large scale. This paper examines the design

and implementation issues involved in creating a PBLE for Mathematics Education Department

using Adobe Flash. Best practices concerning Flash authoring, scripting and design issues, tracking

and saving student progress, sequencing and linking activities, and saving final results for

assessment using external tools are presented. Underlying data structures supporting the PBLE

activity, and local file and server storage access issues are explored. Recommendations are

forwarded for the design and implementation of dynamically generated PBLE content using Flash.

This paper presents conceptual and technical issues encountered in the design and implementation of a

Problem Base Learning Environment (PBLE) using Adobe Flash CS4 and its companion ActionScript 3.0

programming language for the Mathematics Education department at the University of Missouri, Columbia campus.

The author worked as the Flash designer and ActionScript programmer in a team effort with two content developers

and a university mathematics education instructor client. Together we created a prototype PBLE designed to guide

pre-service mathematics teachers through issues relating to maintenance of cognitive demand in 9th – 12th grade

mathematics students. At the time of this writing, the resulting PBLE (http://web.missouri.edu/~glgqk3/MathPBLE)

is under evaluation.

Problem Based Learning

Problem Based Learning Environments are designed to provide learning experiences of complex problem

solving activities in authentic contexts. In traditional instructional design, problem-solving activities are often

presented narrowly, decontextualized from the situations where they are encountered in the real world. Such

problem solving activities are designed to help students dispatch well-structured problems, where the problem type

is reduced to its essentials, the problem domain has been segmented into the minimum taxonomies necessary, and

the variables and constraints, methods and outcomes are defined for the learner before hand. In this type of

instructional design, the student engages in analogical reasoning that is relatively superficial and limited, and may

not transfer well to other contexts (Jonassen, 2006). The worked examples and ensuing end of chapter practice

exercises common in course textbooks represent this type of learning activity. Students are walked through specific

problem types and their respective solutions, and are then expected to identify and resolve similar problems on their

own, after enough practice. The instructional strategy is that learners will gain problem solving experience in phases,

starting with specific activities in constricted contexts and building up successive skills, to be able to tack more

generalized, complex problems in the future (Sweller & Cooper, 1985). However, we rarely encounter problems

packaged in this manner in our work and private lives, and instructional design that focuses on presenting well-

structured problem solving activities so as to ease cognitive load may limit student learning (Jonassen, 2006).

Proponents of Problem Based Learning suggest that the problems we meet in our goings on outside of

traditional academic pursuits, and how we learn to solve them, are often not so simple. Problems are sometimes

nebulous, with dependant parameters and limits that are mediated over time under social and environmental

pressures. Real world problems may have outcomes that have multiple positive and negative impacts to the

individuals, organisms, organizations and environment from which the problems spring (Jonassen, 2000). The

development of the PBLE prototype used as the basis of this study is an example of this type of complex and ill-

structured problem. As the software designer and developer of the PBLE development team, the author had to

negotiate with a client and two content developers to create a usable and useful instructional design that would help

pre-service teachers of mathematics build the skills necessary to maintain their prospective students levels of

cognitive demand. Among multiple implementation technologies, difficult choices of combinations of programming

environments, scripting and server based systems had to be made, none of which had clear advantages over the

other. At the same time, the project requirements evolved and where shaped by the influences of the people involved

in the process. The form of final outcome - a model of a PBLE for pre-service mathematics teachers - was itself an

unknown given that the requirements that it be usable and useful. Neither concept had an enumerable set of

properties that could be known beforehand. Rather than learning how to deal with each of the components involved

in the PBLE design processes in piecemeal fashion, as a student in traditional instruction, the author had to cope

with the complexities of the design process all at once. Despite the difficulties, and perhaps because of them, in the

experience gained in the process will likely develop into meaningful and memorable skills in computer

programming, systems integration, working with people, and the related concepts necessary to design and produce

the PBLE prototype.

PBLEs attempt to address these ideas by presenting problem solving activities in instructional designs that

mimic the complex difficulties we find in our everyday experiences, where initial problem parameters may be

unknown; there may be no well-defined solution paths; and where multiple, equally valid outcomes are applicable

and assessing the utility of one over another may be challenging (Jonassen, 2000). In designing the PBLE for this

project, we attempted to represent these facets of complex problems through intertwined learning strategies,

delineated by Wilson and Cole (1996): students develop an understanding of the problem space in activities that

have them classify the problem; students draw inferences about the problem, methods and possible solutions from

case studies which communicate disparate aspects of the problem incompletely and inconsistently; problem

information is presented in multiple modalities – text, images, audio, and video; students engage in causal thinking,

making connections between problem variables and outcomes in activities where they create causal maps; students

engage in argumentation, both in analysis of case studies and in weighing the usefulness of outcomes they have

constructed. One key learning strategy we sought to engender in the PBLE is that of Cognitive Flexibility (Spiro &

Jehng, 1990), where students would need to access the teacher cases, depictions of classroom activity, and real

teacher's audio stories in identifying themes that relate to the factors affecting the maintenance of cognitive demand,

and produce arguments for where and how those themes may or may not be present in the different cases.

Choosing A Development Environment

One of the requirements for the PBLE was that it needed to be technology supported, and accessible to

undergraduate students through the Web. Adobe Flash was selected as the development environment for the

prototype PBLE for a number of reasons. Flash affords a level of interactivity that Web pages lack without resorting

to other Web browser and server based scripting technologies. Interactivity in Flash can be created entirely

independently, without the need to communicate with outside resources. Additionally, Flash can output stand-alone

executable files that may be distributed on CD or over a network and run without a network and Flash Web browser

plug-in. The latest version of the Flash programming language – ActionScript 3 - is a flexible, full-featured object

oriented programming language that is well supported by Adobe and a host of enthusiasts across the World Wide

Web. One concern our client expressed was that students would likely not be able to complete it in one sitting, and

we would need some way of saving their progress. ActionScript provides API resources to save data locally and is

trivial to implement. Another consideration was that the Flash development environment is better integrated than

some other combinations of browser and server side technologies, allowing the designer to move between textual,

graphic, user interface elements, and the ActionScript code needed to create the interactivity that ties the elements

together with relative ease. Third party developers offer open source additions that extend the APIs, for example,

AlivePDF (http://alivepdf.bytearray.org) that our PBLE uses to allow students to save their finished work as PDF

files on their computer. Lastly, the author was familiar with Flash, having worked with it since 2001, and using it as

a rapid prototyping system for developing a PBLE appeared to be feasible.

Flash Authoring and the PBLE Application Design

Working within the Flash development environment, the designer needs to determine the most efficient

method of authoring content such that it can be interactively stitched together with ActionScript. Flash is foremost

an animation system with a timeline segmented into frames. On top of this fundamental construct, Flash provides the

elements that make up a Flash product: ActionScript holders, text fields, graphics, interactive user interface (UI)

elements, and Symbols. Symbols are ActionScript addressable groupings of script holders, text fields, graphics,

interactive elements, and other symbols. Each symbol contains its own timeline is essentially a microcosm of the

Flash itself. Symbols in Flash are a powerful method of encapsulating content and its scripted interactivity into

autonomous objects that can be nested inside each other to create interactively complex, reusable, pluggable units of

content. Content can be created in the Flash file graphically, by importing images and text from other systems or

created directly on the Stage (the Flash metaphor for the working canvas area) at a particular frame in time, or

programmatically using ActionScript. Content elements may be placed on a single frame or spread across multiple

frames (Fig. 1 A). Flash allows the designer to mix any combination of these methods to construct the finished

product. Additionally, layers are provided in the Flash editor as an authoring convenience, allowing designers to

visually separate content to ease its manipulation.

Such flexibility in the design process presents content integration and management difficulties. In our

PBLE, each activity we want the student to engage was envisioned as a Page of content that might include text,

images, multi-media elements, and interactive buttons and fields. Conceptually, Pages are grouped into the Cases

that our PBLE employs. Each of the pages could have been be constructed either on separate frames (Fig. 1 A), or

encapsulated within symbols, all placed on the same frame, or a combination thereof. In our PBLE, for example,

moving the student from one page to the next could be accomplished either by advancing the Flash timeline to the

appropriate frame containing a specific page, or by making the grouped symbol that represents the page visible.

The mix of frames and symbols the designer chooses is constrained by the routes ActionScript provides to

access the content elements. For ActionScript to be able to address Flash content elements, the elements must exist

at the same point in time as the ActionScript holder that contains the script commands, which call them. Splitting

elements across frames would provide convenient authoring and viewing of the pages of our PBLE (Fig. 1, A), but

would make coding interactivity between pages more complex, because the ActionScript commands would need to

be divided up and placed in the script holders on the frames containing the content to be referenced. We chose to

create the cases as symbols and to encapsulate their respective pages as nested symbols, all placed on a single frame

(Fig. 1, B & C). Doing so simplifies our use of ActionScript because we could create and edit all the functions and

commands needed to manipulate our PBLE's content in one script editor window.

Figure 1: Three sample Flash timelines: A method we chose not to use (A.) - case content placed on separate

frames. All PBLE case content grouped into symbols on frame 2 (B.). Note that each symbol has been placed in its

own layer, visible as the labeled rows in the graphic. A sample symbol timeline (C.): the "Case 1 Jerome" symbol

has been opened in the Flash editor, showing its content pages grouped into page symbols on frame 1. Note that

each symbol has been placed on its own layer. Each page symbol contains all of the elements that make up one

PBLE activity.

Generalizing Interactivity

ActionScript provides APIs to control nearly every Flash element and symbol, but to do so the elements

must be referenced through either pointers or unique Instance Names. User interface access to our PBLE's cases and

pages of activity needed to be provided somehow, as well as means for capturing the states of interactive elements,

and saving and reporting those states that represent student input and progress. As the number of content elements in

prototype PBLE grew, it became obvious that generalized data structures and algorithmic to access the elements

were necessary to alleviate the burden of addressing every element uniquely in ActionScript code. To provide access

to the cases and pages, we created a hierarchical menu mechanism we termed the To Do List. Without employing

some generalized programmatic method, the designer would have to hard-code links to each new page into the To

Do List menu.

Figure 2: Sample ActionScript snippets delineating our PBLE case class definition, we named aCase (A.) and the

instancing of an aCase object (B.) and Pushing a reference to the newly created instance into the array variable:

casesArray. Similarly, (C.) denotes the class definition of a page of a case's content, we named CaseItem, and (D.)

the instancing of several CaseItem objects. Note that the references to each instance of a CaseItem are "pushed" into

the array, caseItems - a property of the aCase class. We only need to explicitly specify the casesArray index of the

case we were linking the page content to (D.) for each page. Note in the 3rd page instanced in the sample (D.) that

we store references to UI elements, contained within the page symbol, in an array.

Figure 3: A partial view of the PBLE. The To Do List is a collapsible, hierarchical list construct programmatically

by ActionScript commands. It's content and linkages are created by iterating through the casesArray and caseItems

arrays visible in the sample code in Fig. 2. The tab heading text, in gray at the top of the graphic, is also constructed

from the data stored in the arrays.

ActionScript supplies constructs for organizing access to large numbers of data elements. To avoid having

to code individual references to the content items, two of these constructs provided pivotal in the design of our

PBLE: Classes and Arrays. Classes are programmer defined objects that group properties - variables that reference

other data, elements and objects - into complex data structures which may then be Instanced and populated with

unique data and references. Classes can be filled with default data in their definition, reducing the programming

effort necessary when instancing them (Fig. 2, A & C). Only the distinctive attribute values need to be assigned to

the specific instance's properties after it has been instanced (Fig. 2, B & D).

In our prototype design, arrays afford storage of references to instances of classes and UI elements through

array indices, rather than assigning each a unique identifier. ActionScript arrays can be dimensioned dynamically –

for example, ActionScript provides arrays with a Push method for growing arrays without needing to calculate the

number of cases, pages, and elements we wanted to create before hand (Fig. 2, B & D). By storing all the reference

to the cases in our PBLE in one array, and the pages of each case in arrays within the case class object, we can

iterate through the content of our PBLE using generic loops. Adding new cases and their constituent pages and

interactivity could be accomplished with little effort, by copying existing code and altering the pasted copy with the

unique references and array indices pointing to newly authored content.

The To Do List menu (Fig. 3), which provides students with the UI point of access to the PBLE cases,

pages and activities, could then be created completely programmatically, without hard-coding the links between the

menu items and the pages they referenced. The menu was implemented using a TextField object populated with

HTML link tags, containing array indices to each case and page as attributes, by iterating through the casesArray,

and the nested pages pointed to by each caseItems index. Adopting this approach meant we could author new

content onto the Flash stage, code the corresponding class instances referencing the content, and the content's name

would be written into the To Do List, embedded in a clickable link. When the student clicks on a To Do List item

link, an ActionScript event is generated and a listening function triggered. The listening function was designed to

dissect the event object passed it by ActionScript's event feature, and retrieve selected case and page indices. The

function then obtains a reference to the corresponding symbol using the casesArray and caseItems array described

previously. The symbol containing the selected case page content was then made it visible after hiding the previous

page.

Tracking and Saving Student Progress

Because we implemented a generalized set of data structures and reference retrieval mechanisms for all of

the cases, pages, and interactive UI elements in the PBLE, recording and saving student progress is a simple matter

of iterating through the sets of arrays to access the stored references to the UI elements, and using those to access the

data the student had input. The collected data was passed to ActionScript's SharedObject.getLocal method, which

creates a file on the student's hard drive. A login screen is provided to open previously stored data, keying on the

input user name. When the student logs in, the PBLE is configured with all of the interactive elements in the same

condition the student left them in.

Storing data locally allowed us to short-circuit the process of developing server side scripts and databases

necessary to save student progress remotely, speeding up the prototype implementation. In the current prototype we

do not track student interface performance data, such as student clicks or page views, though the stored references to

the UI elements would easily allow us to do so. For future research purposes accessing this type of data may be

desirable.

When the student determines they have completed the activities in the PBLE, they save a PDF file that they

may email to the instructor for evaluation. A 3rd party, open source ActionScript class, AlivePDF, effects this

procedure. AlivePDF offers a capable API that allows the programmer to copy text and graphics from the Flash

application into the saved PDF. Providing this capability is possible on the server side, but nearly as convenient as

implementing it in Flash's integrated development environment.

Conclusion: Lessons Learned

Using Flash as a rapid development environment allowed us to create a usable prototype PBLE that has a

high degree of interactivity relatively quickly. ActionScript is complete programming language that contains APIs

for all of the features we needed to implement, and we were able to write the code that drives the PBLE in less than

60 hours over the course of a semester. Because the PBLE design and implementation is a complex, and ill-

structured design problem, much of the code evolved as the PBLE was created. There are features that may have

been constructed differently, had we time to do proper analysis and top down program design,

One of the important difficulties creating applications in Flash is the timeline / frames / layers construct.

While suited to animation, creating interactive applications is limited by how and where content can be placed, and

referenced by ActionScript commands. Authoring content across multiple fames makes viewing the content

straightforward to visualize, but complicates the programming structures that need to access it. Authoring on one

frame makes the ActionScript code less convoluted, but makes viewing each unit of activity more difficult.

A solution to this conundrum might be to author the content externally, and dynamically add it to the PBLE

at runtime by fetching it over the Web. The Flash API provides a URL Loader class for this purpose. On the surface

it would seem the designer could author each page into a separate flash file, making viewing the page content less

cumbersome, but doing so leaves the developer with the same problem, as spreading content across multiple frames:

and programming commands that need to reference elements in the external file need to exist at the same time the

elements do. Again, the developer would have to split code into the external flash files, making code integration

problematic.

One possible, related, solution would be to devise a mark up language, possibly based on HTML, and code

all elements as external Web pages in a Web page editor. The PBLE could then load and parse the external page

markup, and dynamically generate the UI elements that need to be referenced. ActionScript references necessary to

access, track, display, show and hide the respective pages, activities, and UI elements would be stored at the time the

page is reconstituted. This approach would require designing a generalized a markup language extension to HTML,

that would encapsulate all of the possible interaction types a PBLE would need to employ. Doing so would allow

PBLE designers to create content using a Web page editor, without Flash. Flash would then become the vehicle for

displaying and sequencing PBLE, and recording student activity to the content in a completely generalized fashion.

Such a system could serve as a PBLE generator. This idea represents a possible future project.

References

Jonassen, D. (2006). Facilitating Case Reuse During Problem Solving. Technology Instruction Cognition And

Learning, 3, 51-62.

Jonassen, D. H. (2000). Toward a design theory of problem solving. Educational Technology Research and

Development, 48, 63-85.

Spiro, R. J., & Jehng, J-C. (1990). Cognitive Flexibility and Hypertext: Theory and Technology for the Nonlinear

and Multidimensional Traversal of Complex subject matter. In D. Nix & R. J. Spiro (Eds.), Cognition, education,

and multimedia: Exploring ideas in high technology,163-205.

Sweller, J., & Cooper, G. A. (1985). The Use of Worked Examples as a Substitute for Problem Solving in Learning

Algebra. Cognition and Instruction, 2, 59 - 89.

Wilson, B., & Cole, P. (1991). A review of cognitive teaching models. Educational Technology Research and

Development, 39, 47-64

Acknowledgements

The author wishes to thank the PBLE content developers, Weichao Chen, Yayun Yang, in the School of Information

Science and Learning Technology at the University of Missouri, who helped create and edit much of the textual

content used in the PBLE, as well as guiding and negotiating the conceptual design with the client, Dr. Oscar

Chavez in the Mathematics Education department at the University of Missouri, the client for whom the PBLE was

created. We would also thank Dr. David Jonassen at the University of Missouri, who's contributions on PBLE

design concepts were instrumental.

